Unifying nondeterministic and probabilistic planning through imprecise Markov decision processes

Felipe W. Trevizan, Fábio G. Cozman, Leliane N. De Barros

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferencia

3 Citas (Scopus)

Resumen

This paper proposes an unifying formulation for nondeterministic and probabilistic planning. These two strands of AI planning have followed different strategies: while nondeterministic planning usually looks for minimax (or worst-case) policies, probabilistic planning attempts to maximize expected reward. In this paper we show that both problems are special cases of a more general approach, and we demonstrate that the resulting structures are Markov Decision Processes with Imprecise Probabilities (MDPIPs). We also show how existing algorithms for MDPIPs can be adapted to planning under uncertainty. © Springer-Verlag Berlin Heidelberg 2006.
Idioma originalInglés estadounidense
Título de la publicación alojadaUnifying nondeterministic and probabilistic planning through imprecise Markov decision processes
Páginas502-511
Número de páginas10
ISBN (versión digital)3540454624, 9783540454625
EstadoPublicada - 1 ene. 2006
Publicado de forma externa
EventoLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -
Duración: 1 ene. 2018 → …

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen4140 LNAI
ISSN (versión impresa)0302-9743

Conferencia

ConferenciaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Período1/01/18 → …

Huella

Profundice en los temas de investigación de 'Unifying nondeterministic and probabilistic planning through imprecise Markov decision processes'. En conjunto forman una huella única.

Citar esto