The structure and complexity of credal semantics

Fabio G. Cozman, Denis D. Mauá

Resultado de la investigación: Contribución a una conferenciaArtículo de conferencia

4 Citas (Scopus)

Resumen

© 2016, CEUR-WS. All rights reserved. A flexible semantics has been proposed by Lukasiewicz for probabilistic logic programs where we have a normal logic program augmented with a set of independent probabilistic facts. That semantics, which we call credal semantics, is the set of all probability measures (over stable models) that are consistent with a total choice of probabilistic facts. When each total choice produces a definite program, credal semantics is identical to Sato's distribution semantics. However, credal semantics is also defined for programs with cycles and negations. We show that the credal semantics always defines a set containing the probability measures that dominate an infinite monotone Choquet capacity (also known as a belief function). We also show how this result leads to inference algorithms and to an analysis of the complexity of inferences.
Idioma originalInglés estadounidense
Páginas3-14
Número de páginas12
EstadoPublicada - 1 ene 2016
Publicado de forma externa
EventoCEUR Workshop Proceedings -
Duración: 1 ene 2016 → …

Conferencia

ConferenciaCEUR Workshop Proceedings
Período1/01/16 → …

Huella Profundice en los temas de investigación de 'The structure and complexity of credal semantics'. En conjunto forman una huella única.

  • Citar esto

    Cozman, F. G., & Mauá, D. D. (2016). The structure and complexity of credal semantics. 3-14. Papel presentado en CEUR Workshop Proceedings, .