Strong probabilistic planning

Silvio Do Lago Pereira, Leliane Nunes De Barros, Fábio Gagliardi Cozman

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferencia

5 Citas (Scopus)

Resumen

We consider the problem of synthesizing policies, in domains where actions have probabilistic effects, that are optimal in the expected-case among the optimal worst-case strong policies. Thus we combine features from nondeterministic and probabilistic planning in a single framework. We present an algorithm that combines dynamic programming and model checking techniques to find plans satisfying the problem requirements: the strong preimage computation from model checking is used to avoid actions that lead to cycles or dead ends, reducing the model to a Markov Decision Process where all possible policies are strong and worst-case optimal (i.e., successful and minimum length with probability 1). We show that backward induction can then be used to select a policy in this reduced model. The resulting algorithm is presented in two versions (enumerative and symbolic); we show that the latter version allows planning with extended reachability goals. © 2008 Springer Berlin Heidelberg.
Idioma originalInglés estadounidense
Título de la publicación alojadaStrong probabilistic planning
Páginas636-652
Número de páginas17
ISBN (versión digital)3540886354, 9783540886358
DOI
EstadoPublicada - 5 dic. 2008
Publicado de forma externa
EventoLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -
Duración: 1 ene. 2018 → …

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen5317 LNAI
ISSN (versión impresa)0302-9743

Conferencia

ConferenciaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Período1/01/18 → …

Huella

Profundice en los temas de investigación de 'Strong probabilistic planning'. En conjunto forman una huella única.

Citar esto