Speeding up parameter and rule learning for acyclic probabilistic logic programs

Francisco H.O. Vieira de Faria, Arthur Colombini Gusmão, Glauber De Bona, Denis Deratani Mauá, Fabio Gagliardi Cozman

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

© 2018 Elsevier Inc. This paper introduces techniques that speed-up parameter and rule learning for acyclic probabilistic logic programs. We focus on maximum likelihood estimation of parameters, and show that significant improvements can be obtained by efficiently handling probabilistic rules. We then move to structure learning, where we learn sets of rules, by introducing an algorithm that greatly simplifies exact score-based learning. Experiments demonstrate that our methods can produce orders of magnitude speed-ups over the state-of-art in parameter and rule learning.
Idioma originalInglés estadounidense
Páginas (desde-hasta)32-50
Número de páginas19
PublicaciónInternational Journal of Approximate Reasoning
DOI
EstadoPublicada - 1 mar. 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Speeding up parameter and rule learning for acyclic probabilistic logic programs'. En conjunto forman una huella única.

Citar esto