Simultaneous abstract and concrete reinforcement learning

Tiago Matos, Yannick P. Bergamo, Valdinei F. Da Silva, Fabio G. Cozman, Anna H. Reali Costa

Resultado de la investigación: Contribución a una conferenciaArtículo de conferencia

6 Citas (Scopus)

Resumen

Suppose an agent builds a policy that satisfactorily solves a decision problem; suppose further that some aspects of this policy are abstracted and used as starting point in a new, different decision problem. How can the agent accrue the benefits of the abstract policy in the new concrete problem? In this paper we propose a framework for simultaneous reinforcement learning, where the abstract policy helps start up the policy for the concrete problem, and both policies are refined through exploration. We report experiments that demonstrate that our framework is effective in speeding up policy construction for practical problems. Copyright © 2011, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Idioma originalInglés estadounidense
Páginas82-89
Número de páginas8
EstadoPublicada - 1 dic 2011
Publicado de forma externa
EventoSARA 2011 - Proceedings of the 9th Symposium on Abstraction, Reformulation, and Approximation -
Duración: 1 dic 2011 → …

Conferencia

ConferenciaSARA 2011 - Proceedings of the 9th Symposium on Abstraction, Reformulation, and Approximation
Período1/12/11 → …

Huella Profundice en los temas de investigación de 'Simultaneous abstract and concrete reinforcement learning'. En conjunto forman una huella única.

  • Citar esto

    Matos, T., Bergamo, Y. P., Da Silva, V. F., Cozman, F. G., & Reali Costa, A. H. (2011). Simultaneous abstract and concrete reinforcement learning. 82-89. Papel presentado en SARA 2011 - Proceedings of the 9th Symposium on Abstraction, Reformulation, and Approximation, .