Sets of probability distributions, independence, and convexity

Fabio G. Cozman

Resultado de la investigación: Contribución a una revistaReseña científicarevisión exhaustiva

34 Citas (Scopus)

Resumen

This paper analyzes concepts of independence and assumptions of convexity in the theory of sets of probability distributions. The starting point is Kyburg and Pittarelli's discussion of "convex Bayesianism" (in particular their proposals concerning E-admissibility, independence, and convexity). The paper offers an organized review of the literature on independence for sets of probability distributions; new results on graphoid properties and on the justification of "strong independence" (using exchangeability) are presented. Finally, the connection between Kyburg and Pittarelli's results and recent developments on the axiomatization of non-binary preferences, and its impact on "complete" independence, are described. © 2011 Springer Science+Business Media B.V.
Idioma originalInglés estadounidense
Páginas (desde-hasta)577-600
Número de páginas24
PublicaciónSynthese
DOI
EstadoPublicada - 1 may. 2012
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Sets of probability distributions, independence, and convexity'. En conjunto forman una huella única.

Citar esto