Semisupervised learning of classifiers: Theory, algorithms, and their application to human-computer interaction

Ira Cohen, Fabio G. Cozman, Nicu Sebe, Marcelo C. Cirelo, Thomas S. Huang

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

202 Citas (Scopus)

Resumen

Automatic classification is one of the basic tasks required in any pattern recognition and human computer interaction application. In this paper, we discuss training probabilistic classifiers with labeled and unlabeled data. We provide a new analysis that shows under what conditions unlabeled data can be used in learning to improve classification performance. We also show that, if the conditions are violated, using unlabeled data can be detrimental to classification performance. We discuss the implications of this analysis to a specific type of probabilistic classifiers, Bayesian networks, and propose a new structure learning algorithm that can utilize unlabeled data to improve classification. Finally, we show how the resulting algorithms are successfully employed in two applications related to human-computer interaction and pattern recognition: facial expression recognition and face detection. © 2004 IEEE.
Idioma originalInglés estadounidense
Páginas (desde-hasta)1553-1567
Número de páginas15
PublicaciónIEEE Transactions on Pattern Analysis and Machine Intelligence
DOI
EstadoPublicada - 1 dic. 2004
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Semisupervised learning of classifiers: Theory, algorithms, and their application to human-computer interaction'. En conjunto forman una huella única.

Citar esto