Reducing Dimensionality of Variables for a Classification Problem: Fraud Detection

Pedro Shiguihara-Juarez, Nils Murrugarra-Llerena

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Fraud detection can be considered as a classification task since we can use datasets with labelled instances as fraud cases and legal cases. Although, many classifiers were applied to this problem, the data pre-processing related to the reduction of values of each variable is an uncommon approach. We explore a method to reduce the cardinality of the variables in a dataset of fraud transaction to identify improvement in this classification problem. Our best result indicated an improvement of + 31.8% in terms of F1-measure when we reduce the cardinality to detect fraud cases.

Idioma originalInglés
Título de la publicación alojadaSHIRCON 2019 - 2019 IEEE Sciences and Humanities International Research Conference
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728138183
DOI
EstadoPublicada - nov. 2019
Publicado de forma externa
Evento2019 IEEE Sciences and Humanities International Research Conference, SHIRCON 2019 - Lima, Perú
Duración: 13 nov. 201915 nov. 2019

Serie de la publicación

NombreSHIRCON 2019 - 2019 IEEE Sciences and Humanities International Research Conference

Conferencia

Conferencia2019 IEEE Sciences and Humanities International Research Conference, SHIRCON 2019
País/TerritorioPerú
CiudadLima
Período13/11/1915/11/19

Huella

Profundice en los temas de investigación de 'Reducing Dimensionality of Variables for a Classification Problem: Fraud Detection'. En conjunto forman una huella única.

Citar esto