Random generation of Bayesian networks

Jaime S. Ide, Fabio G. Cozman

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferencia

57 Citas (Scopus)

Resumen

© Springer-Verlag Berlin Heidelberg 2002. This paper presents new methods for generation of random Bayesian networks. Suchme thods can be used to test inference and learning algorithms for Bayesian networks, and to obtain insights on average properties of such networks. Any method that generates Bayesian networks must first generate directed acyclic graphs (the “structure” of the network) and then, for the generated graph, conditional probability distributions. No algorithm in the literature currently offers guarantees concerning the distribution of generated Bayesian networks. Using tools from the theory of Markov chains, we propose algorithms that can generate uniformly distributed samples of directed acyclic graphs. We introduce methods for the uniform generation of multi-connected and singly-connected networks for a given number of nodes; constraints on node degree and number of arcs can be easily imposed. After a directed acyclic graphi s uniformly generated, the conditional distributions are produced by sampling Dirichlet distributions.
Idioma originalInglés estadounidense
Título de la publicación alojadaRandom generation of Bayesian networks
Páginas366-376
Número de páginas11
ISBN (versión digital)3540001247, 9783540001249
EstadoPublicada - 1 ene. 2002
Publicado de forma externa
EventoLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) -
Duración: 1 ene. 2018 → …

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen2507
ISSN (versión impresa)0302-9743

Conferencia

ConferenciaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Período1/01/18 → …

Huella

Profundice en los temas de investigación de 'Random generation of Bayesian networks'. En conjunto forman una huella única.

Citar esto