Polynomial maps with maximal multiplicity and the special closure

Carles Bivià-Ausina, Jorge A.C. Huarcaya

Resultado de la investigación: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

Resumen

In this article we characterize the polynomial maps F: C n → C n for which F - 1 (0) is finite and their multiplicity μ(F) is equal to n! V n (Γ ~ + (F)) , where Γ ~ + (F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.

Idioma originalInglés estadounidense
Páginas (desde-hasta)413-429
Número de páginas17
PublicaciónMonatshefte fur Mathematik
Volumen188
N.º3
DOI
EstadoPublicada - 11 mar 2019

Huella dactilar

Polynomial Maps
Multiplicity
Closure
Newton Polyhedron
Filtration

Citar esto

@article{ffa388b4921c4bf79e79c1b51237d2d9,
title = "Polynomial maps with maximal multiplicity and the special closure",
abstract = "In this article we characterize the polynomial maps F: C n → C n for which F - 1 (0) is finite and their multiplicity μ(F) is equal to n! V n (Γ ~ + (F)) , where Γ ~ + (F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.",
keywords = "Complex polynomial maps, Milnor number, Multiplicity, Newton polyhedron",
author = "Carles Bivi{\`a}-Ausina and Huarcaya, {Jorge A.C.}",
year = "2019",
month = "3",
day = "11",
doi = "10.1007/s00605-018-1204-9",
language = "American English",
volume = "188",
pages = "413--429",
journal = "Monatshefte fur Mathematik",
issn = "0026-9255",
publisher = "Springer Verlag",
number = "3",

}

Polynomial maps with maximal multiplicity and the special closure. / Bivià-Ausina, Carles; Huarcaya, Jorge A.C.

En: Monatshefte fur Mathematik, Vol. 188, N.º 3, 11.03.2019, p. 413-429.

Resultado de la investigación: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

TY - JOUR

T1 - Polynomial maps with maximal multiplicity and the special closure

AU - Bivià-Ausina, Carles

AU - Huarcaya, Jorge A.C.

PY - 2019/3/11

Y1 - 2019/3/11

N2 - In this article we characterize the polynomial maps F: C n → C n for which F - 1 (0) is finite and their multiplicity μ(F) is equal to n! V n (Γ ~ + (F)) , where Γ ~ + (F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.

AB - In this article we characterize the polynomial maps F: C n → C n for which F - 1 (0) is finite and their multiplicity μ(F) is equal to n! V n (Γ ~ + (F)) , where Γ ~ + (F) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.

KW - Complex polynomial maps

KW - Milnor number

KW - Multiplicity

KW - Newton polyhedron

UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85048367936&origin=inward

UR - https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85048367936&origin=inward

UR - http://www.mendeley.com/research/polynomial-maps-maximal-multiplicity-special-closure

U2 - 10.1007/s00605-018-1204-9

DO - 10.1007/s00605-018-1204-9

M3 - Article

VL - 188

SP - 413

EP - 429

JO - Monatshefte fur Mathematik

JF - Monatshefte fur Mathematik

SN - 0026-9255

IS - 3

ER -