Resumen
© 2019 IEEE. Tools that enhance interpretability of classifiers tend to focus on the knowledgeable data scientist. Here we propose techniques that generate textual explanations of the internal behavior of a given classifier, aiming at less technically proficient users of machine learning resources. Our approach has been positively evaluated by a group of users who received its textual output.
Idioma original | Inglés estadounidense |
---|---|
Páginas | 239-242 |
Número de páginas | 4 |
DOI | |
Estado | Publicada - 1 jun. 2019 |
Publicado de forma externa | Sí |
Evento | Proceedings - IEEE 2nd International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2019 - Duración: 1 jun. 2019 → … |
Conferencia
Conferencia | Proceedings - IEEE 2nd International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2019 |
---|---|
Período | 1/06/19 → … |