Modified coptisine derivatives as an inhibitor against pathogenic Rhizomucor miehei, Mycolicibacterium smegmatis (Black Fungus), Monkeypox, and Marburg virus by molecular docking and molecular dynamics simulation-based drug design approach

Shopnil Akash, Arafat Hossain, Nobendu Mukerjee, Md Moklesur Rahman Sarker, Mohammad Firoz Khan, Md Jamal Hossain, Mohammad A. Rashid, Ajoy Kumer, Arabinda Ghosh, Darwin A. León-Figueroa, Joshuan J. Barboza, Bijaya Kumar Padhi, Ranjit Sah

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

During the second phase of SARS-CoV-2, an unknown fungal infection, identified as black fungus, was transmitted to numerous people among the hospitalized COVID-19 patients and increased the death rate. The black fungus is associated with the Mycolicibacterium smegmatis, Mucor lusitanicus, and Rhizomucor miehei microorganisms. At the same time, other pathogenic diseases, such as the Monkeypox virus and Marburg virus, impacted global health. Policymakers are concerned about these pathogens due to their severe pathogenic capabilities and rapid spread. However, no standard therapies are available to manage and treat those conditions. Since the coptisine has significant antimicrobial, antiviral, and antifungal properties; therefore, the current investigation has been designed by modifying coptisine to identify an effective drug molecule against Black fungus, Monkeypox, and Marburg virus. After designing the derivatives of coptisine, they have been optimized to get a stable molecular structure. These ligands were then subjected to molecular docking study against two vital proteins obtained from black fungal pathogens: Rhizomucor miehei (PDB ID: 4WTP) and Mycolicibacterium smegmatis (PDB ID 7D6X), and proteins found in Monkeypox virus (PDB ID: 4QWO) and Marburg virus (PDB ID 4OR8). Following molecular docking, other computational investigations, such as ADMET, QSAR, drug-likeness, quantum calculation and molecular dynamics, were also performed to determine their potentiality as antifungal and antiviral inhibitors. The docking score reported that they have strong affinities against Black fungus, Monkeypox virus, and Marburg virus. Then, the molecular dynamic simulation was conducted to determine their stability and durability in the physiological system with water at 100 ns, which documented that the mentioned drugs were stable over the simulated time. Thus, our in silico investigation provides a preliminary report that coptisine derivatives are safe and potentially effective against Black fungus, Monkeypox virus, and Marburg virus. Hence, coptisine derivatives may be a prospective candidate for developing drugs against Black fungus, Monkeypox and Marburg viruses.

Idioma originalInglés
Número de artículo1140494
PublicaciónFrontiers in Pharmacology
Volumen14
DOI
EstadoPublicada - 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Modified coptisine derivatives as an inhibitor against pathogenic Rhizomucor miehei, Mycolicibacterium smegmatis (Black Fungus), Monkeypox, and Marburg virus by molecular docking and molecular dynamics simulation-based drug design approach'. En conjunto forman una huella única.

Citar esto