Resumen
© 2019 IEEE. Recommendation systems play a key role in current online commerce enterprises. Despite their success, they usually behave like black-boxes from the user perspective, typically failing to produce high quality human-computer interactions; interpretability is thus a major concern for the next generation of recommendation systems. In this paper we propose a model-agnostic method based on topic models that generates explanations for content-based recommendation systems.
Idioma original | Inglés estadounidense |
---|---|
Páginas | 800-805 |
Número de páginas | 6 |
DOI | |
Estado | Publicada - 1 oct. 2019 |
Publicado de forma externa | Sí |
Evento | Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019 - Duración: 1 oct. 2019 → … |
Conferencia
Conferencia | Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019 |
---|---|
Período | 1/10/19 → … |