Evenly convex credal sets

Resultado de la investigación: Contribución a una revistaArtículo

Resumen

© 2018 Elsevier Inc. An evenly convex credal set is a set of probability measures that is evenly convex; that is, a set that is an arbitrary intersection of open halfspaces. An evenly convex credal set can for instance encode preference judgments through strict and non-strict inequalities such as P(A)>1/2 and P(A)≤2/3. This paper presents an axiomatization of evenly convex sets from preferences, where we introduce a new (and very weak) Archimedean condition. We examine the duality between preference orderings and credal sets; we also consider assessments of almost preference and natural extensions. We then discuss regular conditioning, a concept that is closely related to evenly convex sets.
Idioma originalInglés estadounidense
Páginas (desde-hasta)124-138
Número de páginas15
PublicaciónInternational Journal of Approximate Reasoning
DOI
EstadoPublicada - 1 dic 2018
Publicado de forma externa

Huella Profundice en los temas de investigación de 'Evenly convex credal sets'. En conjunto forman una huella única.

  • Citar esto