Evaluation of several feature detectors/extractors on underwater images towards vslam

Franco Hidalgo*, Thomas Bräunl

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

27 Citas (Scopus)

Resumen

Modern visual SLAM (vSLAM) algorithms take advantage of computer vision developments in image processing and in interest point detectors to create maps and trajectories from camera images. Different feature detectors and extractors have been evaluated for this purpose in air and ground environments, but not extensively for underwater scenarios. In this paper (I) we characterize underwater images where light and suspended particles alter considerably the images captured, (II) evaluate the performance of common interest points detectors and descriptors in a variety of underwater scenes and conditions towards vSLAM in terms of the number of features matched in subsequent video frames, the precision of the descriptors and the processing time. This research justifies the usage of feature detectors in vSLAM for underwater scenarios and present its challenges and limitations.

Idioma originalInglés
Número de artículo4343
Páginas (desde-hasta)1-16
Número de páginas16
PublicaciónSensors
Volumen20
N.º15
DOI
EstadoPublicada - 1 ago. 2020

Huella

Profundice en los temas de investigación de 'Evaluation of several feature detectors/extractors on underwater images towards vslam'. En conjunto forman una huella única.

Citar esto