Enhancing the Forecast of Ocean Physical Variables through Physics Informed Machine Learning in the Santos Estuary, Brazil

Felipe M. Moreno, Luiz A. Schiaveto Neto, Fabio G. Cozman, Marcelo Dottori, Eduardo A. Tannuri

Resultado de la investigación: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

Resumen

This work aims to improve the forecast of surface currents in the entrance of the Santos estuary in Brazil by applying Quantile Regression Forests (QRF) to estimate the error of the Santos Operational Forecasting System (SOFS), a physics-based numerical model for the region. This was achieved by using in-situ data, measured between 2019 and 2021, associated with historical forecasted data from the SOFS. The use of QRF to correct the SOFS forecasts led to a increase in skill of 0.332 in Mean Absolute Error (MAE) and almost eliminated the bias error of the predicted currents.

Idioma originalInglés
PublicaciónOceans Conference Record (IEEE)
DOI
EstadoPublicada - 2022
Publicado de forma externa
EventoOCEANS 2022 - Chennai - Chennai, India
Duración: 21 feb. 202224 feb. 2022

Huella

Profundice en los temas de investigación de 'Enhancing the Forecast of Ocean Physical Variables through Physics Informed Machine Learning in the Santos Estuary, Brazil'. En conjunto forman una huella única.

Citar esto