Credal sum-product networks

Denis Deratani Mauá, Fabio Gagliardi Cozman, Diarmaid Conaty, Cassio Polpo De Campos

Resultado de la investigación: Contribución a una conferenciaArtículo de conferencia

6 Citas (Scopus)

Resumen

Copyright © PMLR 2017. All rights reserved. Sum-product networks are a relatively new and increasingly popular class of (precise) probabilistic graphical models that allow for marginal inference with polynomial effort. As with other probabilistic models, sum-product networks are often learned from data and used to perform classification. Hence, their results are prone to be unreliable and overconfident. In this work, we develop credal sum-product networks, an imprecise extension of sum-product networks. We present algorithms and complexity results for common inference tasks. We apply our algorithms on realistic classification task using images of digits and show that credal sum-product networks obtained by a perturbation of the parameters of learned sum-product networks are able to distinguish between reliable and unreliable classifications with high accuracy.
Idioma originalInglés estadounidense
Páginas205-216
Número de páginas12
EstadoPublicada - 1 ene. 2019
Publicado de forma externa
EventoProceedings of the 10th International Symposium on Imprecise Probability: Theories and Applications, ISIPTA 2017 -
Duración: 1 ene. 2019 → …

Conferencia

ConferenciaProceedings of the 10th International Symposium on Imprecise Probability: Theories and Applications, ISIPTA 2017
Período1/01/19 → …

Huella

Profundice en los temas de investigación de 'Credal sum-product networks'. En conjunto forman una huella única.

Citar esto