Churn Classification: An Exploration of Features to Improve the Performance

Pedro Shiguihara, Javier Dioses

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This work explores the domain expert's knowledge-based feature engineering for the churn problem. We employ 10-fold cross-validation for parameter tunning and leave-one-out validtion on baselines classifiers. An improvement of up to 9.2% was achieved in terms of the true positive average rate compared to the original dataset, using baselines classifiers. We consider the true positive rate one of the main indicators to measure the churn problem jointly with accuracy and F1. The proposed criteria outperformed the original features between 1.29% and 4.63% in average accuracy using leave-one-out cross-validation. It was also observed that decision trees and ensembles methods performed better than stand-alone classifiers in this problem.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2022 IEEE Engineering International Research Conference, EIRCON 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665450829
DOI
EstadoPublicada - 2022
Evento2022 IEEE Engineering International Research Conference, EIRCON 2022 - Lima, Perú
Duración: 26 oct. 202228 oct. 2022

Serie de la publicación

NombreProceedings of the 2022 IEEE Engineering International Research Conference, EIRCON 2022

Conferencia

Conferencia2022 IEEE Engineering International Research Conference, EIRCON 2022
País/TerritorioPerú
CiudadLima
Período26/10/2228/10/22

Huella

Profundice en los temas de investigación de 'Churn Classification: An Exploration of Features to Improve the Performance'. En conjunto forman una huella única.

Citar esto