Binational survey of personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in coastal environments: Abundance, distribution, and analytical characterization

Gabriel Enrique De-la-Torre, Diana Carolina Dioses-Salinas, Carlos Ivan Pizarro-Ortega, Melisa D. Fernández Severini, Ana D. Forero López, Romina Mansilla, Félix Ayala, Luzby María Jimenez Castillo, Elizabeth Castillo-Paico, Daniel A. Torres, Lisseth Meliza Mendoza-Castilla, Carolina Meza-Chuquizuta, Jhonson K. Vizcarra, Melissa Mejía, Javier Jeirzinho Valdivia De La Gala, Eduardo Alonso Sayra Ninaja, Danny Lowis Siles Calisaya, Walter Eduardo Flores-Miranda, Johan Leandro Eras Rosillo, Dante Espinoza-MorriberónKaren N. Gonzales, Fernando G. Torres, Guido Noé Rimondino, Mohamed Ben-Haddad, Sina Dobaradaran, Tadele Assefa Aragaw, Luis Santillán

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

35 Citas (Scopus)

Resumen

In the present contribution, two nationwide surveys of personal protective equipment (PPE) pollution were conducted in Peru and Argentina aiming to provide valuable information regarding the abundance and distribution of PPE in coastal sites. Additionally, PPE items were recovered from the environment and analyzed by Fourier transformed infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), and X-ray diffraction (XRD), and compared to brand-new PPE in order to investigate the chemical and structural degradation of PPE in the environment. PPE density (PPE m−2) found in both countries were comparable to previous studies. FTIR analysis revealed multiple polymer types comprising common PPE, mainly polypropylene, polyamide, polyethylene terephthalate, and polyester. SEM micrographs showed clear weathering signs, such as cracks, cavities, and rough surfaces in face masks and gloves. EDX elemental mapping revealed the presence of elemental additives, such as Ca in gloves and face masks and AgNPs as an antimicrobial agent. Other metals found on the surface of PPE were Mo, P, Ti, and Zn. XRD patterns displayed a notorious decrease in the crystallinity of polypropylene face masks, which could alter its interaction with external contaminants and stability. The next steps in this line of research were discussed.

Idioma originalInglés
Número de artículo128070
Páginas (desde-hasta)128070
PublicaciónJournal of Hazardous Materials
Volumen426
DOI
EstadoPublicada - 15 mar. 2022

Huella

Profundice en los temas de investigación de 'Binational survey of personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in coastal environments: Abundance, distribution, and analytical characterization'. En conjunto forman una huella única.

Citar esto