Approaches based on tree-structures classifiers to protein fold prediction

Pedro Shiguihara-Juarez, David Mauricio-Sanchez, Alneu De Andrade Lopes

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Protein fold recognition is an important task in the biological area. Different machine learning methods such as multiclass classifiers, one-vs-all and ensemble nested dichotomies were applied to this task and, in most of the cases, multiclass approaches were used. In this paper, we compare classifiers organized in tree structures to classify folds. We used a benchmark dataset containing 125 features to predict folds, comparing different supervised methods and achieving 54% of accuracy. An approach related to tree-structure of classifiers obtained better results in comparison with a hierarchical approach.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2017 IEEE 24th International Congress on Electronics, Electrical Engineering and Computing, INTERCON 2017
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781509063628
DOI
EstadoPublicada - 20 oct. 2017
Publicado de forma externa
Evento24th IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON 2017 - Cusco, Perú
Duración: 15 ago. 201718 ago. 2017

Serie de la publicación

NombreProceedings of the 2017 IEEE 24th International Congress on Electronics, Electrical Engineering and Computing, INTERCON 2017

Conferencia

Conferencia24th IEEE International Congress on Electronics, Electrical Engineering and Computing, INTERCON 2017
País/TerritorioPerú
CiudadCusco
Período15/08/1718/08/17

Huella

Profundice en los temas de investigación de 'Approaches based on tree-structures classifiers to protein fold prediction'. En conjunto forman una huella única.

Citar esto