Aplicación de Modelos de Aprendizaje Automático en la Detección de Fraudes en Transacciones Financieras

Roberto Carlos Dávila-Morán, Rafael Alan Castillo-Sáenz, Alfonso Renato Vargas-Murillo, Leonardo Velarde Dávila, Elvira García-Huamantumba, Camilo Fermín García-Huamantumba, Renzo Fidel Pasquel Cajas, Carlos Enrique Guanilo Paredes

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

10 Citas (Scopus)

Resumen

Introduction: fraud detection in financial transactions has become a critical concern in today’s financial landscape. Machine learning techniques have become a key tool for fraud detection given their ability to analyze large volumes of data and detect subtle patterns. Objective: evaluate the performance of machine learning techniques such as Random Forest and Convolutional Neural Networks to identify fraudulent transactions in real time. Methods: a real-world data set of financial transactions was obtained from various institutions. Data preprocessing techniques were applied that include multiple imputation and variable transformation. Models such as Random Forest, Convolutional Neural Networks, Naive Bayes and Logistic Regression were trained and optimized. Performance was evaluated using metrics such as F1 score. Results: random Forests and Convolutional Neural Networks achieved an F1 score greater than 95% on average, exceeding the target threshold. Random Forests produced the highest average F1 score of 0,956. It was estimated that the models detected 45 % of fraudulent transactions with low variability. Conclusions: the study demonstrated the effectiveness of machine learning models, especially Random Forests and Convolutional Neural Networks, for accurate real-time fraud detection. Its high performance supports the application of these techniques to strengthen financial security. Future research directions are also discussed.

Título traducido de la contribuciónApplication of Machine Learning Models in Fraud Detection in Financial Transactions
Idioma originalEspañol
Número de artículo109
PublicaciónData and Metadata
Volumen2
DOI
EstadoPublicada - 20 ene. 2023

Palabras clave

  • Convolutional Neural Networks
  • Fraud Detection
  • Machine Learning
  • Performance Evaluation
  • Random Forests

Huella

Profundice en los temas de investigación de 'Aplicación de Modelos de Aprendizaje Automático en la Detección de Fraudes en Transacciones Financieras'. En conjunto forman una huella única.

Citar esto