An experimental evaluation of a scalable probabilistic description logic approach for semantic link prediction

José Eduardo Ochoa Luna, Kate Revoredo, Fabio Gagliardi Cozman

Resultado de la investigación: Contribución a una conferenciaArtículo de conferencia

2 Citas (Scopus)

Resumen

In previous work, we presented an approach for link prediction using a probabilistic description logic, named crALC. Inference in crALC, considering all the social network individuals, was used for suggesting or not a link. Despite the preliminary experiments have shown the potential of the approach, it seems unsuitable for real world scenarios, since in the presence of a social network with many individuals and evidences about them, the inference was unfeasible. Therefore, we extended our approach through the consideration of graph-based features to reduce the space of individuals used in inference. In this paper, we evaluate empirically this modification comparing it with standard proposals. It was possible to verify that this strategy does not decrease the quality of the results and makes the approach scalable.
Idioma originalInglés estadounidense
Páginas63-74
Número de páginas12
EstadoPublicada - 1 dic 2012
Publicado de forma externa
EventoCEUR Workshop Proceedings -
Duración: 1 ene 2016 → …

Conferencia

ConferenciaCEUR Workshop Proceedings
Período1/01/16 → …

Huella Profundice en los temas de investigación de 'An experimental evaluation of a scalable probabilistic description logic approach for semantic link prediction'. En conjunto forman una huella única.

  • Citar esto

    Ochoa Luna, J. E., Revoredo, K., & Cozman, F. G. (2012). An experimental evaluation of a scalable probabilistic description logic approach for semantic link prediction. 63-74. Papel presentado en CEUR Workshop Proceedings, .