A Bayesian Classifier Based on Constraints of Ordering of Variables for Fraud Detection

Pedro Shiguihara-Juarez, Nils Murrugarra-Llerena

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Fraud detection is important for financial institutions and the society. Supervised machine learning techniques were applied for fraud detection. However, mostly discriminative techniques were applied on these problems. Probabilistic graphical models can also detect fraud, providing also a graphical representation of its reasoning scheme as a graph. We proposed a method to generate a probabilistic graphical model for fraud detection, using constraints related to the domain. We achieved 99.272% of accuracy and we outperformed other baselines techniques of probabilistic graphical models. We demonstrated that constraints are important to tackle complex problem such a fraud detection.

Idioma originalInglés
Título de la publicación alojada2018 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2018 - Proceedings
EditoresCarlos Andres Lozano-Garzon
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538681312
DOI
EstadoPublicada - 21 dic. 2018
Publicado de forma externa
Evento4th Innovation and Trends in Engineering Congress, CONIITI 2018 - Bogota, Colombia
Duración: 3 oct. 20185 oct. 2018

Serie de la publicación

Nombre2018 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2018 - Proceedings

Conferencia

Conferencia4th Innovation and Trends in Engineering Congress, CONIITI 2018
País/TerritorioColombia
CiudadBogota
Período3/10/185/10/18

Huella

Profundice en los temas de investigación de 'A Bayesian Classifier Based on Constraints of Ordering of Variables for Fraud Detection'. En conjunto forman una huella única.

Citar esto