Evenly convex credal sets

Fabio Gagliardi Cozman

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

© 2018 Elsevier Inc. An evenly convex credal set is a set of probability measures that is evenly convex; that is, a set that is an arbitrary intersection of open halfspaces. An evenly convex credal set can for instance encode preference judgments through strict and non-strict inequalities such as P(A)>1/2 and P(A)≤2/3. This paper presents an axiomatization of evenly convex sets from preferences, where we introduce a new (and very weak) Archimedean condition. We examine the duality between preference orderings and credal sets; we also consider assessments of almost preference and natural extensions. We then discuss regular conditioning, a concept that is closely related to evenly convex sets.
Original languageAmerican English
Pages (from-to)124-138
Number of pages15
JournalInternational Journal of Approximate Reasoning
DOIs
StatePublished - 1 Dec 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Evenly convex credal sets'. Together they form a unique fingerprint.

Cite this